Learning AAM fitting through simulation

نویسندگان

  • Jason M. Saragih
  • Roland Göcke
چکیده

The Active Appearance Model (AAM) is a powerful method for modeling and segmenting deformable visual objects. The utility of the AAM stems from two fronts: its compact representation as a linear object class and its rapid fitting procedure, which utilizes fixed linear updates. Although the original fitting procedure works well for objects with restricted variability when initialization is close to the optimum, its efficacy deteriorates in more general settings, with regards to both accuracy and capture range. In this paper, we propose a novel fitting procedure where training is coupled with, and directly addresses, AAM fitting in its deployment. This is achieved by simulating the conditions of real fitting problems and learning the best set of fixed linear mappings, such that performance over these simulations is optimized. The power of the approach does not stem from an update model with larger capacity, but from addressing the whole fitting procedure simultaneously. To motivate the approach, it is compared with a number of existing AAM fitting procedures on two publicly available face databases. It is shown that this method exhibits convergence rates, capture range and convergence accuracy that are significantly better than other linear methods and comparable to a nonlinear method, whilst affording superior computational efficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locality-Constrained Active Appearance Model

Although the conventional Active Appearance Model (AAM) has achieved some success for face alignment, it still suffers from the generalization problem when be applied to unseen subjects and images. In this paper, a novel Locality-constraint AAM (LC-AAM) algorithm is proposed to tackle the generalization problem of AAM. Theoretically, the proposed LC-AAM is a fast approximation for a sparsity-re...

متن کامل

Progressive AAM Based Robust Face Alignment

AAM has been successfully applied to face alignment, but its performance is very sensitive to initial values. In case the initial values are a little far distant from the global optimum values, there exists a pretty good possibility that AAM-based face alignment may converge to a local minimum. In this paper, we propose a progressive AAM-based face alignment algorithm which first finds the feat...

متن کامل

Active Appearance Models for Facial Expression Recognition and Monocular Head Pose Estimation

Human face images can show a great degree of variability in shape and texture. This appearance variations are caused by differences between individuals, deformations in facial expression, pose and illumination changes. Model based techniques represent a very promissing approach where a model representing an identity of interest is matched with unknown data. Face models are able to mimic shape a...

متن کامل

Video-based face model fitting using Adaptive Active Appearance Model

Active Appearance Model (AAM) represents the shape and appearance of an object via two low-dimensional subspaces, one for shape and one for appearance. AAM for facial images is currently receiving considerable attention from the computer vision community. However, most existing work focuses on fitting an AAM to a single image. For many applications, effectively fitting an AAM to video sequences...

متن کامل

Active Appearance Model Fitting under Occlusion using Fast-robust PCA

The Active Appearance Model (AAM) is a widely used method for model based vision showing excellent results. But one major drawback is that the method is not robust against occlusions. Thus, if parts of the image are occluded the method converges to local minima and the obtained results are unreliable. To overcome this problem we propose a robust AAM fitting strategy. The main idea is to apply a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2009